CamiTK, A FREE Open Source Framework to easily and rapidly prototype CAMI Applications

CamiTK (Computer Assisted Medical Intervention Tool Kit) is a Free Open Source Application and Framework developed at the TIMC-IMAG laboratory of the Grenoble University, France. It helps researchers and clinicians to easily and rapidly collaborate in order to prototype CAMI applications, that feature medical images, surgical navigation and biomechanical simulations.

It was developed internally since 2001 and the first open source version was version 2.0 which released in November 2011. It is developed with C++, Qt and VTK.

CamiTK Framework

It consists of three components: CamiTK Core, CamiTK Service Layer and CamiTK Extensions.

1- CamiTK Core

  • Definition and Implementation of concepts.
  • Only experts are supposed to understand it well.

2- CamiTK Service Layer

  • The glue between your problem and the framework.
  • Developers need basic knowledge.

3- CamiTK Extensions

  • Where domain-specific work is done.
  • Focus on your project/problem.

Knowledge gathering

CamiTK avoids reinventing the wheel by gathering the knowledge and know-how from several research fields:

1- Perception

  • Visualization
  • Interaction
  • Processing
  • Analysis

2- Reasoning

  • 3D geometries
  • Interaction
  • Biomechanics

3- Action

  • Tracking
  • Navigation
  • Robot Control

Some projects based on CamiTK

1- ROBACUS

ROBACUS is a patient-mounted CT and MRI guided interventional radiology robot for percutaneous needle interventions. The 5 degree of freedom robot uses ultrasonic motors and pneumatics to position the needle and then insert it progressively. The needle position and inclination can be registered in the images using two strategically placed fiducials visible in both imaging modalities. The robot is controlled through CamiTK as a component with a set of actions that            can be applied to make it move. The image processing for fiducial segmentation and registration is done using existing CamiTK components.

2- Instument tracking via condensation algorithm - Urology

This project allows instrument tracking using 2D laparoscopic images. The instrument's orientation is detected using the CONDENSATION algorithm (M. Isard et A. Black, Conditional Density Propagation for Visual Tracking). General steps can be re-implemented using CamiTK (particle choice, particle evolution, ...).  We can then create our own framework by defineing our own instrument with its own characteristics and then track its 3D orientation using the known insertion point.

3- Light Aspiration device for in vivo Soft Tissue Characterization (LASTIC)

LASTIC is a measurement tool used to determine soft tissue elasticity, a key parameter for the simulation and the deformation of organs and soft tissues (like the tongue or the skin). This device consists of three components: a syringe-pump to generate a depression, a manometer to measure the depression and a camera inside LASTIC to visualize the deformation of the studied soft tissue. This project integrates a CAMITK library to communicate through serial ports to control the manometer and syringe-pump.

4- MML framework

The MML framework is designed to help scientists in the difficult problem of evaluating and comparing bio-mechanical models of various types (e.g. FEM, Mass-spring) and from different simulation engines (e.g. Sofa, Artisynth, Ansys).

5- Biomechanical Modeling

CamiTK can be used to create 3D models comprised of multiple deformable objects. Various parameters (elasticity, contraction,  incompressibility...) can be implemented on the deformable objects, in order to monitor how they affect the behavior of certain particles/objects/entire structure. The tool to vizualize the model in a 3D environment is camitk-imp. A program to convert an xml document  executable by CamiTK to an xml document executable by SOFA (valid only for specific usage) has also been created. Finally, it is possible to visualize in camitk-imp a model initially created for the SOFA simulator using MML.

6- BiopSym

BiopSym is a virtual reality simulator with a learning environment for image-guided prostate biopsy. The simulator,a laptop computer connected to a haptic device with a stylus held as the ultrasound probe, includes a clinical case database (three dimensional ultrasound volumes) and a learning environment with specific  exercises and a module to replicate a randomized 12-core biopsy procedure. A visual (biopsy mapping) and numerical feedback (score) is given to the user.

Highlights

  • Free and open source.
  • Cross platform.
  • Provides fast and stable tools for prototyping medical applications.
  • Fast technological transfer between students, PhD, research scientists, clinicians and industrial partners.
  • Easy integration of algorithms, data, and devices.
  • Knowledge gathering.
  • Support for common medical imaging and biomechanical model formats (DICOM, VTKImage, ITKImage, VTKMesh, PML, VML).
  • Greatly modular with an easy extension mechanism that clearly separates domain logic (data and algorithms) from application logic (visualization and interaction).

Developers

There are three main developers: Celine Fouard, Emmanuel Promayon (they are both teacher-researchers at the TIMC-IMAG laboratory of the Grenoble University in the CAMI team) and Jean-Loup Haberbusch (joined the team as research and development engineer to work full-time on the project). There are many other contributors to the project as well.

License

  • LGPL v3.0

References



  • Medevel's Outbreak Monitor: is a free web monitoring service for outbreaks, It is a necessary tool I built to help people stay updated with the country-specific news.  Currently, The system is monitoring hundreds of news sources and Twitter public feed for country-based news. We have created this page to hold...Read more...

  • Netron is an open-source multi-platform visualizer and editor for artificial intelligence models. It supports many extensions for deep learning, machine learning and neural network models.  Netron is using Electron/ NodeJS and it has a binary application release for Windows, Linux and macOS. Netron is popular among data scientists, The project's...Read more...

  • Cliniface is an open-source facial analysis solution.  It supports many file formats. It's built using many open-source libraries and frameworks. Cliniface is built on a modular architecture, which allows developers to extend its functionalities and features. Description (By the developer):Faces can provide clues about an individual’s condition through...Read more...

  • BioImageXD is an open-source microscopy imaging software for processing, analyzing, visualizing, and rendering multi-dimensional microscopy images. The project was carried out by a team of researchers including microscopists, cell biologists and software engineers from the Universities of Jyväskylä and Turku in Finland, Max Planck Institute CBG in Dresden, Germany and...Read more...

  • Virtual Reality (VR)  is trending nowadays, in the gaming industry, simulation, education, and industrial sector.  Over a decade ago, Second Life was trending as an online virtual world. Since then some games and application emerged in the same context, but the virtual world is not the same as virtual reality,...Read more...